Progressions of Addition, Subtraction, Multiplication, Division and Algebra through NZC Phases 1-3 aligned with Numicon

ALGEBRA - copy, continue, create, and describe a repeating pattern with two elements	- copy, continue, create, and describe a repeating pattern with three elements, and identify missing elements in a pattern		- show that in an equation, both sides of the equal sign represent the same quantity - use both the unit of repeat and the ordinal position (e.g., first, second, and third) of a repeating pattern to predict further elements	I know that: The commutative property applies to addition (e.g., $2+5=5$ +2) and multiplication (e.g., $5 \times 2=2 \times 5$). The additive identity is 0 (e.g., $4+0=4$ and $5-0=5)$, and the multiplicative identity is 1 (e.g., $5 \times 1=5$ and $4 \div 1=4$). The equal sign is relational; it shows that the two sides of an equation are the same. Patterns are made of numeric or spatial elements in a sequence governed by a rule. Identifying the rule of a pattern involves working out the unit of repeat. An algorithm is a sequence of rules that can be followed. I know how to: - recall addition facts to 20 and their corresponding subtraction facts - recall multiplication and corresponding division facts for twos, fives, and tens - solve true and false number sentences and open number sentences - use the additive and multiplicative identities and commutative property - find another element of a pattern, given part of it - describe a rule that explains how a pattern works - follow, and create patterns from, rules or simple algorithms.	Firm Foundations Numicon 1 Numicon 2
Phase 2					
Must achieve during Year 4		Must achieve during Year 5		Progress outcomes by the end of Year 6	Numicon
- use their recalled addition and subtraction basic facts to solve problems		- add and subtract whole numbers reliably and efficiently			Numicon 3

| - add and subtract two- and three-digit
 numbers reliably and efficiently
 - add and subtract using the commutative
 property | | |
| :--- | :--- | :--- | :--- |
| - use the relationship between multiplication
 and division to divide
 - recall multiplication and corresponding
 division facts for threes and fours | - multiply two-digit numbers using the
 distributive property
 - multiply reliably and efficiently
 - recall multiplication and corresponding division
 facts for sixes, eights, and nines | Numicon 4
 - add and subtract whole numbers and
 decimal numbers to two places
 numbers two and three-digit whole
 - divide whole numbers by one- or two-digit
 divisors • find factors of numbers up to 100 |

I know how to:

- divide whole numbers reliably and efficiently
- add and subtract decimals to three places
- add and subtract fractions with the same denominator
- multiply fractions and decimals by whole numbers

- add and subtract integers.

ALGEBRA

I know that:
The inverse property applies to addition (e.g., $3+-3=0$)
and multiplication (e.g., $3 \times 31=1$).
Operations to both sides preserve the balance of an equation.
The commutative, associative, distributive, and identity properties work the same for all numbers.
A variable can be used to stand for any number.
Functions are relationships or rules that uniquely associate members of one set with members of another set.
Linear patterns and functions have a constant rate of change. They can be represented by ordered pairs, tables, XY graphs, and a rule (equation). Algorithms help solve problems in a systematic way. Their instructions are created, tested, and revised.

I know how to:

- identify and describe the properties of prime, composite, and square numbers and the divisibility rules for $2,3,5,9$, and 10
- use words and symbols to describe and represent the properties of operations (commutative, distributive, associative, inverse, and identity)
- solve linear equations by trial and improvement and by applying inverse operations
- use variables to represent a rule about a linear pattern, and use the rule to make predictions
- represent and connect linear functions using tables, equations, and XY graphs
- create and use algorithms to identify, interpret, and explain patterns.

